EP 1 429 240 A1

Européisches Patentamt

European Patent Office

(19) g)

(12)

Office européen des brevets

(43) Date of publication:
16.06.2004 Bulletin 2004/25

(21) Application number: 02022453.1

(22) Date of filing: 04.10.2002

(11) EP 1 429 240 A1

EUROPEAN PATENT APPLICATION

(51) intcl.7: GO6F 9/44

(84) Designated Contracting States:
ATBEBG CHCY CZ DE DK EE ES FI FR GB GR
IEITLILU MC NLPTSESKTR
Designated Extension States:
AL LT LV MK RO SI

(71) Applicant: Swiss Reinsurance Company
8022 Zurich (CH)

(72) Inventor: Schenk, André
4055 Basel (CH)

(74) Representative: Becker Kurig Straus
Patentanwilte
Bavariastrasse 7
80336 Miinchen (DE)

(54)
configuration file

(57) There is disclosed a method and a device for
generating distributed applications for each level in a
multi-level database environment, comprising:

- receiving an integrated configuration code compris-
ing code sections for all information required for
generating an application in each of said levels,

24
20

Method and device for generating distributed JAVA applications by means of a central XML

- parsing all code sections in said integrated config-
uration code required for at least one level of said
multi-level environment,

- extracting said parsed code sections for said at
least one level, and

- converting said extracted code sections into level-
specific application code for each extracted level.

getting the meta information

26

\/\ 22 for each table
a list of table names pass over XML
- > r
(DEAL CONTRACT) [[[generates configuration file

Fig. 2

Printed by Jouve, 75001 PARIS (FR)

1 EP 1 429 240 A1 2

Description

[0001] The presentinvention relates to the generation
of distributed applications in a multi tier or multi level
environment, preferably in databases. It also relates to
the generation of object oriented, distributed JAVA ap-
plications.

[0002] Distributed applications are further and more
developed versions of typical Client - Server applica-
tions. The main advantage of such a distributed archi-
tecture also known as n-tier or multi tier applications is
the clear separation of the individual layers (tiers).
Those tiers are generally comprised of a database serv-
er for maintaining persistent data, an application server
for executing an object logic or business logic, a WEB
server for preparing the presentation and a Client Appli-
cation for presentation to the user and user interaction.
[0003] Such architecture is describedin United States
Patent 5,212,787, This document discloses a method
for accessing a relational database outside an object-
oriented environment, without exiting this environment.
This access to the relational database is performed by
atranslator application for providing application protocol
interfaces between the object-oriented environment and
the relational database.

[0004] One problem with such architectures is the
added complexity the application developer has to deal
with. In the development process of a classical Client -
Server application, the developer has a graphical devel-
opment tool and directly accesses the database data.
This simplifies the process because the developer has
to deal with only 2 layers and not 3 or more.

[0005] In many cases during the development of n-
tier distributed applications, several types of Client ap-
plications are to be implemented. Typically one applica-
tion is a fully-fledged JAVA Client with a Graphical User
Interface (GUI) and the other is a slick WEB Browser
based application. The data to process have to be sent
to the WEB - or Application Server. When data have
been sentto the WEB Server, they have to be processed
- translated for the Application Server. The Application
Server then executes the object logic or business logic
and creates the statements to query the database. Due
to the great complexity of the architecture, application
developers are often puzzled and fail.

[0006] It is therefore desirable to have a method and
device to simplify the generation of applications in all
tiers of a multi tier environment.

[0007] According to one aspect of the invention, a
method is provided to generate applications in all tiers
of a multi tier environment. The method comprises ac-
cessing an integrated configuration code comprising
code sections for all information required for generating
an application in each of said levels. Said information
comprises data, commands, definitions, layout and the
like. The access can be implemented e.g. by receiving,
retrieving, generating by user input, and re-working a
previously stored integrated configuration code. In the

10

15

20

25

30

35

40

45

50

55

configuration code all sections required for at least one
application in at least one level of said multi-level envi-
ronment are then parsed. The parsed code sections are
extracted for said at least one level, and converted or
translated into level-specific application code for each
level.

[0008] In an example embodiment of the present in-
vention the method further comprises identifying all
code sections required for at least one level of said multi-
level environment in said integrated configuration code.
[0009] Inanotherexample embodimentthe said level-
specific application code is a JAVA code. The Java code
provides a possibility to program an application inde-
pendent of the actually used hardware, providing an ap-
plication that can be run on nearly every server-, middle
ware or client device in the tiers. So the generated ap-
plication requires no additional information of the avail-
able application program interfaces or other proprietary
characteristics of the devices the application is gener-
ated for. Therefore, the integrated configuration code
can economize all device or platform specific informa-
tion.

[0010] Another example embodiment of the method
further comprises sending or transmitting said level-
specific applications to devices in said multi level envi-
ronment.

[0011] According to another aspect of the present in-
vention a method for generating an integrated configu-
ration code is provided. The generation of the integrated
configuration code comprises receiving at least one rep-
resentation of a database table of a database. Said at
least one representation defines an object such as a
business object in the database. This can be done e.g.
by user input and the like. After that, all meta-information
of the at least one database table represented by said
least one representation is retrieved from the database
that said table is stored in. The meta-information com-
prises information of the contents and additional infor-
mation about it such as attributes and relations of said
at least one database table. The meta information can
comprise information about relations of the database ta-
ble to other (even not listed) database tables. The tables
and the meta information are used to generate an inte-
grated configuration code. The integrated configuration
code comprises code sections for all meta information
retrieved from said database, which is required for gen-
erating an application in each of said tiers. The config-
uration file comprises all information required to map
said object defined by said representations of tables to
said configuration file. The configuration file can be
processed or revised to change and vary the relations
and content of said object. The integrated configuration
file defines said object and its masks, including the ob-
ject logic (e.g. business logic) like validation, presenta-
tion such as format, communication between the differ-
ent tiers and the storage on the database. Said compo-
nents of the configuration file that can not be derived
from the database, have to be generated from other pre-

3 EP 1429 240 A1 4

viously generated configurations files, from libraries or
via user input.

[0012] In an example embodiment said integrated
configuration code is an XML (Extensible Markup Lan-
guage) file. By using an XML file the configuration code
can be generated and processed independently of the
actually used device. Another advantage is that XML
provides a portable data and code format, which is easy
to use. The integrated configuration XML file offers the
possibility to code data such as the contents of an object
and data objects together with program sections and
configuration of the presentation of said object and data
objects.

[0013] The invention allows the developer to maintain
all aspects in one place and to generate an implemen-
tation. The developer can create a skeleton multitier ap-
plication without programming effort, as the integrated
configuration file is generated automatically. He can
concentrate on the implementation of the application
specific behavior by enhancing the generated skeleton
provided by the XML configuration file.

[0014] The gist idea behind the invention comprises
that every object e.g. a business object can be mapped
to a database table. Therefore, it is also possible to de-
scribe this mapping in a configuration file. This is
achieved according to one aspect of the invention by
using a generator that takes one or more database ta-
bles as argument and creates a base configuration file
by reading the meta information from the database for
the specified tables.

[0015] The configuration file can also be used to con-
figure the presentation of an object. In other words, it
can be specified how to format the value of an Attribute,
how to validate the value, what visual form and size the
GUI component has (Textfield, Checkbox, Dropdown,
Menu...). Furthermore it is possible to specify labels and
other aspects in the configuration file without actually
programming in JAVA. All this information describes an
entity, which is in fact the blue print to dissolve or disin-
tegrate an object.

[0016] Theinvention uses and leveragesthe following
technologies : JAVA, XML and JSP (Struts).

[0017] Java is an object-oriented and platform inde-
pendent program language, used for the generated ap-
plications. SWING is a graphical user interface class li-
brary, such as ATW for generating user interfaces in a
Java environment, instead of using SWING any other
standard GUI library like ATW can be used for generat-
ing the GUIs of applications. JDBC (Java Database
Connectivity) is a Java-API| (Application program inter-
face) for executing of SQL (Structured Query Language)
orders used in relational databases. JDBC can be uti-
lized in every application having direct access to a SQL
database. XML (Extensible Markup Language) is used
for the configuration file. The extensibility of XML ena-
bles it to store data and XML provides Parsers, DTD
(Document Type Definition) to convert the XML file to
JAVA applications. JAVA Server Pages (JSP) is used to

10

15

20

25

30

35

40

45

50

55

generate GUIs for Internet and HTML applications. The
JSPs can e.g. be generated with STRUTS, an open
source framework of utilizing pre-stored design patterns
to facilitate the development of JSP applications.
[0018] When the developer finally has specified all
needed information for an entity, the necessary code
files can be generated.

[0019] The resulting files per Entity are:

1. Java Class Source files

¢ Swing Panel

¢ Swing Table

¢ Client Object

¢ Server Object

¢ Data object of the Object Logic
e Struts Action

e Struts Form

2. JSP (Java Server Pages) Pages
* Presentation of the Object

According to yet another aspect of the inven-
tion, a software tool is provided comprising program
code means for carrying out the method of the pre-
ceding description when said program product is
run on a computer or a network device.

According to another aspect of the present in-
vention, acomputer program productdownloadable
from a server for carrying out the method of the pre-
ceding description is provided, which comprises
program code means for performing all of the steps
of the preceding description when said program is
run on a computer or a network device.

According to yet another aspect of the inven-
tion, a computer program product is provided com-
prising program code means stored on a computer
readable medium for carrying out the methods of
the preceding description, when said program prod-
uct is run on a computer or a network device.

According to yet another aspect, the present in-
vention provides a computer device for generating
distributed applications for each level in a multi-tier
environment. The computer device comprises a re-
ception module, a controller, a user interface and a
network module. The reception module is required,
to receive an integrated configuration code com-
prising code sections for different levels of a multi
level environment. The controller, is connected to
said reception module, and is configured to parse,
identify, extract and convert code sections of said
integrated configuration code into level-specific ap-
plication code for each tier in said environment. The
user interface is connected to said controller, to ex-
tend and revise said integrated configuration code.
The network module is connected to said controller,
to transfer said generated level-specific application

5 EP 1 429 240 A1 6

code to other devices in a network.

In the following, the invention will be described

in detail by referring to the enclosed drawings in
which:

[0020]

Figure 1 is a block diagram depicting a multi tier
environment,

Figure 2 is a block diagram, depicting an exam-
ple of the generation of an XML configuration
file,

Figure 3 is a simple example for the mapping
of database information to an XML file,

Figure 4 is an example of an XML entity config-
uration file,

Figure 5 is an example of an XML attributes
configuration file,

Figure 6 is an example of an XML relation con-
figuration file,

Figure 7 is a block diagram, depicting an exam-
ple of the generation of applications in a multi
tier environmentform an XML configurationfile,

Figure 8 is an example of a swing screen im-
plementation of a business object,

Figure 9 is an example of a swing table imple-
mentation of a table,

Figure 10 is an example of an implementation
for validation and notification of interactions
with a business object,

Figure 11 is an example of an implementation
for holding the data of a business object,

Figure 12 is an example of an implementation
of ahookto execute a server side business log-
ic of a business object,

Figure 13 is block diagram, depicting an exam-
ple of the bindings between a graphical user in-
terface and data,

Figure 14 to 17 describe an example of a syn-
chronization process of data objects between
a client and a server,

Figure 18 to 22 are examples of properties for
the different properties of the code used in the

aforementioned generation processes

In other instances, detailed descriptions of

10

15

20

25

30

35

40

45

50

55

well-known methods, interfaces, devices, and signaling
techniques are omitted so as not to obscure the descrip-
tion.

[0021] Figure 1 is a block diagram depicting an over-
view of the typical multi tier environment architecture.
Distributed applications are further and more developed
versions of typical Client - Server Applications. The main
advantage of such a distributed architecture also known
as n-tier ormultitier applications is the clear separations
of the individual layers (tiers). The depicted multi level
or multi tier environment is comprised of a Database
Server 2 an Application server 4, a Client Application 6,
a Web Server 8 and a HTML (Hypertext Markup Lan-
guage) Client 10. The Database Server 2 representsthe
first or lowest tier of the multi tier environment. The Da-
tabase Server 2 is for maintaining persistent data, and
physically stores the data of a database in form a tables,
entries, attributes, relations and other meta information.
The Database Server utilizes a database server appli-
cation to retrieve the physically stored data and to ex-
change data with the Application Server 4.

[0022] The Application Server 4 forms the second tier
of the environment. The Application Server 4 forms the
link between Database server 2 and the Client Applica-
tion 6 and the Web Server 8 respectively. The Applica-
tion Server 4 is for executing a object logic or business
logic, and generates queries to query the data stored in
the Database Server 2 according to requests received
from the Client 6 and the Web Server 8. The requests
can comprise read out operations to retrieve information
stored in the database or write operations to change the
content of the database. To execute the read out oper-
ations, the Application Server 4 comprises a query build-
er application and a data object updater to execute write
operations corresponding to requests received from the
Client 6 or the Web Server 8. To execute the communi-
cation and to handle the different protocols between the
Database Server 2, the Web Server 8 and the Client 6
the Application Server 4 uses an application server ap-
plication.

[0023] Client 6 is connected to the Application Server
4 to send data object requests to and to update data
objects in the Database Server 2. The Client 6 forms the
third tier. The Client 6 comprises a graphical user inter-
face (GUI) for presentation and user interaction to sim-
plify the database access. The GUI and the data ex-
change with the Application Server 4, is executed by
means of a client application running on a user terminal.
[0024] The Web server 8 is connected to the Applica-
tion Server 4 to exchange data object requests and data
objects between the Database Server 2 and the HTML
Client 10. The Web Server 8 is for preparing presenta-
tions and forms the fourth tier in the environment. The
Web server 8 comprises a data object updater and a
data request executor to interpret the different protocols
and to forward requests between the HTML Client 10
and the Application Server 4. The data exchange and
the interpreting are executed by means of a web server

7 EP 1 429 240 A1 8

application.

[0025] The HTML Client 10 is connected to the Web
server 8 to exchange data and to provide database ac-
cess via the Web. The HTML Client 10 forms the fifth
tier in the environment. The HTML Client 10 transforms
the HTML code received from the Web Server 8 to a
web page as a graphical user interface for presentation
and user interaction. The web page has to be defined
as a HTML graphic application.

[0026] To provide all these applications, the database
server application, the application server application,
the client application, the web server application and the
HTML graphic application has to be generated. The
problem high complexity the application developer has
to deal with.

[0027] In many cases during the development of n-
tier distributed applications, several types of Client ap-
plications have to be implemented. Typically one appli-
cation is a full-fledged JAVA Client (Client 8) with a GUI
and the other is a slick WEB Browser based application
(Web Server 8). The data to be processed have to be
sentto the WEB 8 - or Application Server 4. When data
has been sent to the WEB Server 8, they have to be
processed - translated for the Application Server 4. The
Application Server 4 then executes the object logic or
the business logic and creates the statements to query
the database Server 2. Due to the great complexity of
the architecture, even small errors lead to a failures in
the interaction between the different tiers.

[0028] Figure 2 is a block diagram, depicting an ex-
ample of the generation of an XML configuration file 26.
The method basically comprises two more or less inde-
pendent sub-elements, the generation of the applica-
tions form a fully integrated configuration code, and the
generation of the configuration code by means of meta
information of a database and the application specific
requirements. The latter is depicted and described in fig-
ure 2. Both sub methods contribute to simplify the gen-
eration of applications in a multi tier environment.
[0029] To generate afully integrated configuration file
26 for generating distributed JAVA applications for inter-
acting with databases in a multi-tier environment having
at least a server tier and a client tier, the properties of
an object or a business object have to be fixed. In a re-
lational database determining the tables 20 comprising
the required information can do this. Having determined
the tables 20 comprising the relevant information, the
respective relations between the tables can be retrieved
from the database 24 comprising this information. If the
applications to be generated are designed to access ex-
isting tables of a database, it can be sufficient to deter-
mine the required tables e.g. in a list of tables 20. Addi-
tional information such as data structure can also be re-
trieved from the database 24. Alternatively, only single
table elements and the respective relations can be de-
termined, to generate e.g. a demo version for the appli-
cation.

[0030] Based onthe tables and the meta information

10

15

20

25

30

35

40

45

50

55

a configuration file can be generated 22. The configura-
tion file 26 can be generated as an XML configuration
file comprising all information for the desired application.
Thereby a selection of database tables or the represen-
tations of theses tables and the respective relations de-
fining a database or business object can be mapped to
a configuration file. Additional information according to
the number of expected or required tiers can also be
determined prior to the generation of the configuration
file.

[0031] The basic idea is to define all properties in an
integrated file, and generate a single composition with
all information necessary to generate applications in all
tiers of the environment. So not only the single proper-
ties necessary for a single application is defined, but al-
so the whole structure of the single tiers are integrated
in a single file. Basically the idea can be compared to
the generation of a single part of a jigsaw puzzle by first
generating a picture and cutting only the required piece
from it, wherein it is guaranteed that all parts cut from
the same picture are fitting, instead of generating a sin-
gle part separately and hoping that there is somewhere
an other part going together.

[0032] Upon passing a list of table hames 20 to the
entities generator 22, the generator 22 creates a default
configuration file 26 (entities.xml), with the information
retrieved from the database 24. To generate the inte-
grated configuration filet the application uses XML-
technology such as a Parserand DTD (Document Type
Definition).

[0033] Figure 3 depicts a simple example for mapping
of a database table to an XML file. The generation can
be embodied as a translator translating the tables of e.
g. an ODBC- or an ORACLE, or Trans-Base- database
with its structure and contents to an XML file.

[0034] Starting from a simple database table 30 the
entries of the table are mapped to an XML configuration
file 30. The present example only describes the struc-
ture and the contents of the table without any relations
between the single elements. It is to be noted that the
present example is not restricted to price lists, but can
also be applied to any kind of table contents, such as
parttables and the like. This example is only for provid-
ing an idea of how to implement one aspect of the inte-
grated file generator. According to the XML design rules,
the name of the list forms the start <price list> and the
end </price list> of the XML file section. The other prop-
erties are also forming sub-elements with additional in-
formation about the contents of the list. Due to the rel-
atively small number of elements in the table, the map-
ping function between the table and selected table ele-
ments should be clear, and provide a sufficient indica-
tion of how to implement the configuration file generator.
The exact implementation of the generator is dependent
of the used database structure the used operation sys-
tem and the computer language used to implement the
generator.

[0035] Figure 4 is an example of an XML entity con-

9 EP 1 429 240 A1 10

figuration file section of an integrated configuration file.
Entities are used to define objects or business objects
of the same type. The entity configuration file (entities.
xml) comprises an XML tag <entity to relate the meaning
of the following text to entities.

[0036] The tag is not closed to indicate that the de-
picted selection is only exemplary and not limited to the
depicted text. In the enclosed list defines the properties
of an entity, defining a name, a label and a comment of
the object. The entity is further defined by Boolean class
name, a document class name, a condition possible
condition errors, a signed as primary key and unique
key.

[0037] Figure 5 is an example of an XML attributes
configuration file. Attributes define the properties of an
object or a business object. As in the description of Fig-
ure 3 and 4 the file section starts with an XML tag 50
<attributes> identifying the following text as attributes.
The first attribute relates the label "Deal id" to the name
"DEALID". In the following the class name, the format
and the maximum number of digits of the entity is de-
fined. The next attribute tag defines the attributes of the
entity "inspection date".

[0038] Figure 6is an example of an XML relation con-
figuration file. Relations indicated by the XML tag 60
<relation> express the joins when storing or loading ob-
jects or business objects. In the figure the entity "CON-
TRACT" with the name "dealcontract" is allocated to the
parent attribute "DEALID". Similarly, the entity "PART-
NER" with the name "dealpartner" is allocatedto the par-
ent attribute "DEALID". Other attribute types are de-
scriptors, identificators, optional descriptors and other
functionality can also be defined or fixed.

[0039] Th entities, the attributes and the relations can
be extracted from the meta information stored in the da-
tabase. The configuration file itself can be automatically
generated, if the only the database tables are deter-
mined, and the respective meta information is retrieved
from the database.

[0040] Figure 7 is a block diagram, depicting an ex-
ample of the generation of applications in a multi tier
environment form an XML configuration file. As dis-
cussed in figure 2, the method basically comprises two
more or less independent sub-elements, the generation
of the applications form a fully integrated configuration
code, and the generation of the configuration code by
means of meta information of a database and the appli-
cation specific requirements. The former method is de-
picted and described in figure 7.

[0041] With the entity and attribute and relation infor-
mation defined in the XML configuration file 70, the
framework generates 71 base classes for the applica-
tions in all tiers of the multi tier environment. On the Cli-
ent side 72 the applications for objects or business ob-
jects 73 and for screens and tables 75 are generated.
On the server side 73 applications for objects or busi-
ness objects 77 and for the entity manager storage 78
are generated. The generator 71 also generates mid-

10

15

20

25

30

35

40

45

50

55

dleware applications for data objects 76.

[0042] The generation of the application can use an
extended version of JAXB (Java Architecture for XML
binding) to map the XML elementsto classes inthe Java
programming language. Standard JAXB is not capable
of identifying the relevant section in the XML file neces-
sary for the single applications in each tier. Therefore it
is necessary to provide an additional feature or tool to
parse, identify and extract, the relevant code sections
in the XML file prior to the generation of the Java appli-
cations.

[0043] The basic idea is to generate a single compo-
sition with all information necessary to generate appli-
cations in all tiers of the environment. Basically, the idea
can be compared to the generation of a jigsaw puzzle
by first generating a picture and cutting it into pieces,
wherein it is guaranteed that all parts are fitting, instead
of generating each part separately and hoping that they
would go together.

[0044] Figure 8 is an example of a swing screen im-
plementation of a business object. The, swing screen
implementation is provided as an examplary gridbag
layout, binding visual components with data to the cor-
responding objects or business objects. SWING is a
graphical user interface class library, such as ATW for
generating user interfaces, instead of using SWING any
otherstandard GU| library like ATW can be used for gen-
eratingthe GUIs of applications. The client interpretsthe
depicted swing screen as to display a protected void for
user input and to retrieve the initiation date of the object
deal following to the input on the input of an object iden-
tification (dealid). All the depicted code section of the
swing screen example can be directly generated from
the XML configuration file.

[0045] Figure 9 is an example of the implementation
of a database table as a swing table code. With default
renderers and editors, columns are defined as (non-)
sortable, editable, (non-) resizable, preferred- min- max
number of characters and the like. All the depicted code
section of the swing table example can be directly gen-
erated from the XML configuration file.

[0046] Figure 10 is an example of an implementation
for validation and notification of interactions with an ob-
ject or a business object. Object or business objects for
Client side validation, register listeners to be notified if
the object or business object has changed.

[0047] Figure 11 is an example of an implementation
for holding the data of an object or a business object.
Data objects for holding the data of an object or a busi-
ness object will be send to the Server if modified. The
swing implementation has some help methods like "is-
Modified()".

Figure 12 is an example of an implementation of a hook
to execute a server side object logic or business logic
of an object or a business object. It is provided by static
methods without any state.

Figure 13 is block diagram, depicting an example of the
bindings between a graphical user interface and data.

11 EP 1 429 240 A1 12

The block diagram demonstrates how data of an object
or a business object interacts with the presentation lay-
er. This is done using the MVC (Model, View, Controller)
Pattern, which was implemented by the code generator
when the panel was generated.

[0048] The depicted graphical user interface (GUI)
130 comprises different component for receiving user
input and displaying data. Each of the inputcomponents
is registered by an adapter 132 to respective listeners.
In case of a user input to the receiving components of
the GUI 130, the adapter gets the value from the com-
ponent and delegates it to the object or the business
object 134. The object 134 runs through all its registered
listeners to execute a changed event. The changed
event is received by adapter controller 136 which in turn
controls a component to display in the GUI 130 a for-
matted value according to an attribute which is bound
to the is control.

[0049] Figure 14 to 17 describe an example of a syn-
chronization process of data objects between a client
and a server.

[0050] Figure 14 depicts an object 140 with data ob-
jects changed by a Client. The client application extracts
the changed or modified data objects 142 from the ob-
ject 140 and sends the extracted modified data objects
142 to the server.

[0051] Figure 15 depicts the reaction of the server on
the reception of the modified data objects. Each re-
ceived modified data object 150 is first assigned 151 to
a database table 155, to determine if the data object is
assignable, the value oft the data object has changed.
Than an update action 152 is executed, said update ac-
tion comprises the updating 152 of persistent data in
storage and in table 155. To confirm the update, the
changed data are a read out 154 from in the storage,
and the updated data objects are returned to the client.
[0052] Figure 16 depicts the reaction of the client to
the reception of the updated data objects 162 from the
server. Updating the data objects 162 in the tables of
the object 160 performs the updating.

[0053] Figure 17 depicts the reaction of the client to
the updated object 172. The updated objects 172 are
used to update the GUI components 170 on a display
of the Client. Following the updating process, the all data
objects the updated and the unchanged data objects
specified by the GUI and the object are displayed. The
updating of the GUI component 170 is executed by us-
ing listener and adapter applications.

[0054] All the above applications necessary to pro-
vide the interactions between the Client and the Server
can be generated from a single XML file specifying the
object itself, the GUI the Extract and update processes
and the properties of the data objects. In summary, Fig-
ures 14-17 demonstrates how data from one ore more
Clients are synchronized with the database without hav-
ing to write specific code by the application developer.
[0055] Figure 18to 22 are examples of propetrties for
the different properties of the code used in the afore-

10

15

20

25

30

35

40

45

50

55

mentioned generation processes.

[0056] Figure 18 describes properties for entities,
such as names, labels and comments for an entity. Oth-
er properties are related to type and handling of the en-
tity, the type of data, the language the entity has to be
interpreted with, a condition for an error message, an
object class name, a data object class hame, the type
of access to be granted an a list of attributes in the entity.
[0057] Figure 19 describes database relevant proper-
ties for entities. Such as names for a schema, a write
and read table, primary keys, and statements to gener-
ate a primary key, to search, select, update, delete and
insert data objects in the database.

[0058] Figure 20 describes a selection of properties
for attributes.
[0059] Figure 21 describes GUI relevant properties

for attributes. The GUI relevant attributes are used to
arrange data in or as a texfield, a label, a check box, an
icon, a code table etc. Tabled depicted in the GUI can
be arranged by defining the number of rows and col-
umns, and a code table name can be used to name a
table.

[0060] Figure 22 describes relations between entities.
The name of a relation and the EntityName should be
clear to describe the relation itself and the entities as-
sociated by said relation. The foreignkeys are used to
define the keys to join the entities. The foreign keys are
used to implement the different relationships in the meta
information of the database in the configuration file. In
figure 6 only the relation "parent attribute" is shown, but
other relations can also be defined as 1:1, I:n or nm
relations, optional and restricted relations and relation
between one two or more tables.

[0061] This application contains the description of im-
plementations and embodiments of the present inven-
tion with the help of examples. It will be appreciated by
a person skilled in the art that the present invention is
not restricted to details of the embodiments presented
above, and that the invention can also be implemented
in another form without deviating from the characteris-
tics of the invention. The embodiments presented above
should be considered illustrative, but not restricting.
Thus the possibilities of implementing and using the in-
vention are only restricted by the enclosed claims. Con-
sequently various options of implementing the invention
as determined by the claims, including equivalent imple-
mentations, also belong to the scope of the invention.

Claims

1. Method for generating distributed applications for
each level in a multi-level database environment,
comprising:

- receiving an integrated configuration code
comprising code sections for all information re-
quired for generating an application in each of

13 EP 1429 240 A1 14

said levels,

- parsing all code sections in said integrated con-
figuration code required for at least one level of
said multi-level environment,

- extracting said parsed code sections for said at
least one level, and

- converting said extracted code sections into
level-specific application code for each extract-
ed level.

Method according to claim 1, wherein said parsing
step comprises identifying all code sections in said
integrated configuration code required for at least
one level of said multi-level environment

Method according to claim 1, wherein said level-
specific application code is a JAVA code.

Method according to claim 1, further comprising
sending said level-specific application code to a de-
vice in said multi level database environment.

Method for generating an integrated configuration
code in a multi-level database environment, com-
prising:

- receiving at least one representation of a data-
base table of said database,

- retrieving all meta-information of said database
table represented by said least one represen-
tation from said database, said meta-informa-
tion comprising information related to the con-
tents of and additional information about said
at least one database table,

- generating an integrated configuration code
comprising code sections for all meta informa-
tion retrieved from said database.

Method according to anyone of the preceding
claims, wherein said integrated configuration code
is an XML file.

Software tool comprising program code means
stored on a computer readable medium for carrying
out the method of anyone of claims 1 to 6 when said
software tool is run on a computer or network de-
vice.

Computer program product comprising program
code means stored on a computer readable medi-
um for carrying out the method of anyone of claims
1 to 6 when said program product is run on a com-
puter or network device.

Computer program product comprising program
code, downloadable from a server for carrying out
the method of anyone of claims 1 to 6 when said
program product is run on a computer or network

10

15

20

25

30

35

40

45

50

55

10.

device.

Network device for generating distributed applica-
tions for each level in a multi-level environment
comprising

- a reception module, to receive an integrated
configuration code comprising code sections
for different levels of a multi level environment,

- acontroller, being connected to said reception
module, and being configured to parse, extract
and convert code sections of said integrated
configuration code into level-specific applica-
tion code for each level,

- a user interface, connected to said controller,
to revise said integrated configuration code,

- anetwork module connected to said controller,
to transfer said level-specific application code
to other devices in a network.

["31g

EP 1429 240 A1

\/\ 4 \/\ 9
/ [
w) Janoaxy
3 S soping Asano jsanbayoalqoereq
P = ss)epdn palqoeleq | ¢ ===
© =3 . S| |saepdn pslgoeleq ==
nmm % - : hpm
g (Clop) £
e sjoenuod S _) A =
P o —
: i
' B - . 001 L1y iy e
_ 10}98UU07) 18NS oM proeuien ey
6 = reeTrmen
19)n29x3 | < S}oBJJUOD e
1senbayvalqoeleq A u_.moowu. S
Je1epdn 108lqoejeq / F.g_m vl | Jusid INLH

20

Y

a list of taﬁle names
(DEAL CONTRACT)

s

24

EP 1429 240 A1

22

pass over

—_—

26
getting the meta information
for each table
XML
l] [I generates configuration file

Fig. 2

/

- price list
/ coffe

name

price
Moca Java 12.34 4|
Cuba 147017 |

</price list>

<price list>

<coffee>

<name>Moca Java</name>
<price>12.34</price>
coffee>
<coffee>
<name>Cuba</name>

<price>14.70</price>
</coffee>

10

EP 1429 240 A1

<entity
name="DEAL"
label="Deal™
comment="This is the Deal”

4() boclassname="persistency.client.bos.Deal"
doclassname="persistency.dos.DealDataCbject"
condition=""
conditionerror=""
schema="DEMO"
tablename="DEAL"
edittablename="DEAL"
primarykeyname=""DEALID"
primarykeystatement="SELECT PERSISTENCY_ SEQ.NEXTVAL FROM D

uniquekeys="DEALID"

<attributes>
<attribute
name=""DEALID"
label="Deal id"

50 classname="java.lang.Integer"
format="#, #40"
maxsize="10"
decimaldigit="0"
componenttype="texrtfield"”

/>

<attribute
name="InceptionbDate"
label="Start"
clasgname="java.util.Date"

Fig. 5

<relations>
<relation name="dealcontract"” entity="CONTRACT'">
<foreignkeys>
<foreignkey
60 attribute="DEALID"
parentattribute="DEALID"/>
~</foreignkeys>
</relation>
<relation name="dealpartner” entity="PARTNER">
<foreignkeys>
<foreignkey
attribute="DEALID"
parentattribute="DEALID"/>

) <!fo;eignkeys>
Fig. 6

11

EP 1429 240 A1

79 _S—JCIient | Server 73
70

J Business Objects Business Objects

configuration file

7 \/—\ 77
XML Data Ob]ects

[I [l generates
screens entity manager S 78
and lables storage

Fig. 7

public class DealPanel extends BaseDataPanel

{

public class ContractTablePanel extends GFWTablePanel implements C

{

protected void preProcessView() throws GFWBaseException {°

GFWTextField dealld = GFWGuiFactory.getTextField(Deal.DEAL
GFWDate initiationDate = GFWGuiFactory.getDate(Deal.INITI2

getBinder (Deal.ENTITY.getName ()):

GFYGridBagPanel mainPan = new GFWGridBagPanel():
addCenter (mainPan) :

mainPan. add (GFWGuiFactory.getLabel (Deal.DEALID), dealld):
mainPan. add (GFWGuiFactory.getLabel (Deal.INITIATIONDATE}, i

Fig. 8

public Arraylist createTableColumnDescriptors() {

Arraylist descriptors = new Arraylist():

GFWTableColumnDescriptor columnDescriptor:

columnDescriptor = new GFWTableColumnDescriptor (Contract.I

columnDescriptor.setEditor (new GFWTableCellComponentEditor
columnDescriptor. setSortable (false)
columnDescrlptor setEditable (true);
columnDescriptor.setResizeable (Ealse):
columnDescriptor.setPreferredWidth (130):
descriptors. add {(columnDescriptor);

return descriptors:

12

EP 1429 240 A1

public class BaseDeal extends BaseBusinessObject
{
private DealDataObject mDataObject:

public void setDealld(Integer value) throws GFWBaseEsception {
mDataObject.storeCldValues();

Integer oldvalue = mDataObject.mDealld:
mDataObject.mDealld = value:
mDataObject.mDealld = (Integer)validateValue(mDataObject.m
}
public Integer getDealld() {
return mDataObject.mDealld:

} I
Fig. 10

public class PealDataObject implements Serializable, Cloneable, Da
{ .
HashMap mDataObjectCollectionMap = new HashMap{():

public Integer mDealld:
public Integer mOldDealld:

public boolean isModified/{)

{
if (mDealld == null)
{

}

if (mOldDealld != null) return true;

Fig. 11

public class ServerContract extends BaseBusinessObject

{
public static void beforelnsert(ContractDataObject dataCbject)
throws GFWBaseException

{}

public static void afterInsert(ContractDataObject dataObject}
throws GFWBaseException

{1}

public static void beforeUpdate(ContractDataObject dataObject)

throws GFWBaseException
{1}
™.

Fig. 12

13

the adapler registers different
kinds of listeners on each
component

EP 1429 240 A1

the component displays the formatted value
,as defined in the attribute, which is bound to this control

Deal Name

DeatlD i

130

Status |

132

Pericd

Deal Caper
Parner
(
adapter listener

the adapter gets the value
from the component and
delegates it to the Business Objects

Deal 1

extract the modified

N 136

adapter controller

e

e Business Object runs
through all it's registered
listeners to execute a changed
event

134

Fig. 13

send the modified Data
objects to the Server

140

Contracts Partners

‘before update

Data Objects

155

151

152?

Update Action

A
_i%@mt\

~

153 |

Execufe T—,]

Read Action

154

after update

Fig. 15

14

update the GUI components on
the screens by using listeners
and adapters

EP 1429 240 A1

updates the Data
Objects in the existing

updated Data Objects
Bus .
Business Objects | @ _ffom the Server

)+

Fig. 16

DeatName | | Dealip
Deal Carrier -l Status
Deal Partner Period

Properties for entities

Fig. 17

Name Description

Name The entity name

Label The label for this entity
Comment » Comments for this entity
ClassName Type class name

Condition Interpreted condition language
ConditionError Condition error message
BusinessObjectClassName The Business Object class name
DataObjectClassName The Data Object class name
Access Read, writer, read Write, none
Attributes A list of attributes

Fig. 18

15

EP 1429 240 A1

Database relevant properties for entities

Name Description

Schema The name of the database schema
TableName The database table name (read)
EditTableName The database table name (write)
PrimaryKeyName The primary key
PrimaryKeyStatement Statement to generate the primary key
SearchStmt User defined search statement
SelectStmt User defined select statement
UpdateStmt User defined update statement
DeleteStmt User defined delete statement
InsertStmt User defined insert statement

Properties for attributes

Fig. 19

Name Description

Name The attribute name from the database
Label The label for this attribute

Comment Comments for this attribute
ClassName Type class name

Condition Interpreted condition language
ConditionError Condition error message

Format Java Message format

Type Email, wwwLink etc

Access Read, writer, readWrite, none

Fig. 20

GUI relevant properties for attributes

Name Description

Type Textfield, Label, Checkbox, Codetable etc.
Columns - Number of columns

Rows Number of rows

CodeTableName Name of the codeta

Relations between entities

Fig. 21

Name

Description

Name Name for this relation
EntityName The name to a related Entity
ForeignKeys The foreign keys to join the entities

Fig. 22

16

EPO FORM 1503 03.82 (PO4C01)

D)

EP 1429 240 A1

European Patent
Office

EUROPEAN SEARCH REPORT

DOCUMENTS CONSIDERED TO BE RELEVANT

Application Number

EP 02 02 2453

Category

Citation of document with indication, where appropriate,
of relevant passages

Relevant
to claim

CLASSIFICATION OF THE
APPLICATION (intCL.7)

A

US 5 987 247 A (LAU CHRISTINA)
16 November 1999 (1999-11-16)
* column 5, line 15 - column 6, line 60 *

* column 16, line 49 - column 17, line 12
*

US 5 960 200 A (EAGER TIMOTHY ET AL)
28 September 1999 (1999-09-28)
* column 1, line 11 - column 2, 1ine 62 *

WO 98 18079 A (IMAGINATION SOFTWARE ;KLEIN
LAURENCE € (US))

30 April 1998 (1998-04-30)

* page 4, line 27 - page 14, line 2 *
HAUPT T ET AL: "Web based metacomputing”
FUTURE GENERATIONS COMPUTER SYSTEMS,
ELSEVIER SCIENCE PUBLISHERS. AMSTERDAM,
NL,

vol. 15, no. 5-6, October 1999 (1999-10),
pages 735-743, XP004176760

ISSN: 0167-739X

* the whole document *

The present search report has been drawn up for all claims

1-10

1-10

1-10

1-10

GO6F9/44

TECHNICAL FIELDS
SEARCHED (int.CL7)

GO6F

Place of search Date of complation of the search

THE HAGUE 30 May 2003

Examiner

Brandt, J

CATEGORY OF CITED DOCUMENTS

T : theory or principle underlying the invention

E : eadier patent document, but published on, or

X ; particularly relevant if taken alone after the filing date

Y : particularly relevant if combined with another
document of the same category

A lechnological background

O : non-written disclosure

P : intermediate document document

D : document cited in the application
L : document cited for other reasons

& : member of the same patent family, comresponding

17

EPO FORM P0459

EP 1429 240 A1

ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENT APPLICATION NO. EP 02 02 2453

This annex lists the patent family membersrelating to the patent documents cited in the above-mentioned European search report.
The members are as contained in the European Patent Office EDP file on
The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

30-05-2003
Patent cocument Pubiication Patent family Publication
cited in search report date member(s) date

US 5987247 A 16-11-1999 CA 2232671 Al 09-11-1998
US 5960200 A 28-09-1999 AU 2822297 A 26-11-1997
WO 9742572 Al 13-11-1997

W0 9818079 A 30-04-1998 AU 4822397 A 15-05-1998
WO 9818079 Al 30-04-1998

us 6185590 B1 06-02-2001

For more details about this annex : see Official Journal of the European Patent Cffice, No. 12/82

18

